Contributo in atti di convegno, 2019, ENG, 10.1109/IGARSS.2019.8899185
Matteoli, Stefania; DIani, Marco; Corsini, Giovanni
Università di Pisa; Consiglio Nazionale delle Ricerche; Italian Naval Academy
This work presents a novel target detector that combines a nonparametric approach for conditional probability density function (pdf) estimation and an adaptive estimation of the target strength of the additive model it is based on. The variable bandwidth kernel density estimator is employed for pdf estimation within the Generalized Likelihood Ratio Test (GLRT) framework and a closed-form solution is found. Experimental results featuring hyperspectral data of a real subpixel target detection scenario reveal the potential of the proposed approach.
IEEE International Geoscience and Remote Sensing Symposium, pp. 449–452, 2019
additive model, Hyperspectral imaging, kernel density estimation, nonparametric approach, target detection
IEIIT – Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni
ID: 490864
Year: 2019
Type: Contributo in atti di convegno
Creation: 2023-12-29 15:43:40.000
Last update: 2024-01-09 09:56:26.000
CNR authors
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1109/IGARSS.2019.8899185
URL: http://www.scopus.com/record/display.url?eid=2-s2.0-85077724600&origin=inward
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:490864
DOI: 10.1109/IGARSS.2019.8899185
Scopus: 2-s2.0-85077724600