Contributo in atti di convegno, 2019, ENG, 10.1109/IGARSS.2019.8899185

Nonparametric Target Detection with Target Strength Estimation for Hyperspectral Images

Matteoli, Stefania; DIani, Marco; Corsini, Giovanni

Università di Pisa; Consiglio Nazionale delle Ricerche; Italian Naval Academy

This work presents a novel target detector that combines a nonparametric approach for conditional probability density function (pdf) estimation and an adaptive estimation of the target strength of the additive model it is based on. The variable bandwidth kernel density estimator is employed for pdf estimation within the Generalized Likelihood Ratio Test (GLRT) framework and a closed-form solution is found. Experimental results featuring hyperspectral data of a real subpixel target detection scenario reveal the potential of the proposed approach.

IEEE International Geoscience and Remote Sensing Symposium, pp. 449–452, 2019

Keywords

additive model, Hyperspectral imaging, kernel density estimation, nonparametric approach, target detection

CNR authors

Matteoli Stefania

CNR institutes

IEIIT – Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni

ID: 490864

Year: 2019

Type: Contributo in atti di convegno

Creation: 2023-12-29 15:43:40.000

Last update: 2024-01-09 09:56:26.000

External IDs

CNR OAI-PMH: oai:it.cnr:prodotti:490864

DOI: 10.1109/IGARSS.2019.8899185

Scopus: 2-s2.0-85077724600