Articolo in rivista, 2023, ENG, 10.3390/ma16062344
Giulio Tavani, Chiara Barri, Erfan Mafakheri, Giorgia Franzò, Michele Celebrano, Michele Castriotta, Matteo Di Giancamillo, Giorgio Ferrari, Francesco Picciariello, Giulio Foletto, Costantino Agnesi, Giuseppe Vallone, Paolo Villoresi, Vito Sorianello, Davide Rotta, Marco Finazzi, Monica Bollani, Enrico Prati
1 L-NESS, Department of Physics, Politecnico di Milano, Via Francesco Anzani 42, I-22100 Como, Italy 2 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy 3 Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Via Santa Sofia 64, I-95123 Catania, Italy 4 Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy 5 Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy 6 Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6B, I-35131 Padua, Italy 7 Photonic Networks and Technologies Lab., Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), I-56124 Pisa, Italy 8 CamGraPhIC Srl, Via G. Moruzzi 1, I-56124 Pisa, Italy 9 TeCIP Institute, Scuola Superiore Sant'Anna, Via G. Moruzzi 1, I-56124 Pisa, Italy 10 Department of Physics "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, I-20133 Milan, Italy * Author to whom correspondence should be addressed.
Recent advancements in quantum key distribution (QKD) protocols opened the chance to exploit nonlaser sources for their implementation. A possible solution might consist in erbium-doped light emitting diodes (LEDs), which are able to produce photons in the third communication window, with a wavelength around 1550 nm. Here, we present silicon LEDs based on the electroluminescence of Er:O complexes in Si. Such sources are fabricated with a fully-compatible CMOS process on a 220 nm-thick silicon-on-insulator (SOI) wafer, the common standard in silicon photonics. The implantation depth is tuned to match the center of the silicon layer. The erbium and oxygen co-doping ratio is tuned to optimize the electroluminescence signal. We fabricate a batch of Er:O diodes with surface areas ranging from 1 µm × 1 µm to 50 µm × 50 µm emitting 1550 nm photons at room temperature. We demonstrate emission rates around 5 × 106 photons/s for a 1 µm × 1 µm device at room temperature using superconducting nanowire detectors cooled at 0.8 K. The demonstration of Er:O diodes integrated in the 220 nm SOI platform paves the way towards the creation of integrated silicon photon sources suitable for arbitrary-statistic-tolerant QKD protocols.
Materials (Basel)
ID: 491659
Year: 2023
Type: Articolo in rivista
Creation: 2024-01-17 12:02:21.000
Last update: 2024-01-17 12:02:21.000
CNR authors
CNR institutes
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:491659
DOI: 10.3390/ma16062344