3D content stored in big databases or shared on the Internet is a precious resource for several applications, but unfortunately it risks being underexploited due to the difficulty of retrieving it efficiently. In this paper we describe a system called the "ShapeAnnotator" through which it is possible to perform non-trivial segmentations of 3D surface meshes and annotate the detected parts through concepts expressed by an ontology. Each part is connected to an instance that can be stored in a knowledge base to ease the retrieval process based on semantics. Through an intuitive interface, users create such instances by simply selecting proper classes in the ontology; attributes and relations with other instances can be computed automatically based on a customizable analysis of the underlying topology and geometry of the parts. We show how our part-based annotation framework can be used in two scenarios, namely for the creation of avatars in emerging Internet-based virtual worlds, and for product design in e-manufacturing.
Characterization of 3D shape parts for semantic annotation
Marco Attene;Francesco Robbiano;Michela Spagnuolo;Bianca Falcidieno
2009
Abstract
3D content stored in big databases or shared on the Internet is a precious resource for several applications, but unfortunately it risks being underexploited due to the difficulty of retrieving it efficiently. In this paper we describe a system called the "ShapeAnnotator" through which it is possible to perform non-trivial segmentations of 3D surface meshes and annotate the detected parts through concepts expressed by an ontology. Each part is connected to an instance that can be stored in a knowledge base to ease the retrieval process based on semantics. Through an intuitive interface, users create such instances by simply selecting proper classes in the ontology; attributes and relations with other instances can be computed automatically based on a customizable analysis of the underlying topology and geometry of the parts. We show how our part-based annotation framework can be used in two scenarios, namely for the creation of avatars in emerging Internet-based virtual worlds, and for product design in e-manufacturing.File | Dimensione | Formato | |
---|---|---|---|
prod_64910-doc_13438.pdf
solo utenti autorizzati
Descrizione: AnnotatorCAD
Dimensione
3.18 MB
Formato
Adobe PDF
|
3.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prod_64910-doc_30067.pdf
solo utenti autorizzati
Descrizione: CAD-Preface
Dimensione
321.42 kB
Formato
Adobe PDF
|
321.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.