A class of preconditioners for the Mortar Method based on substructuring is studied. We generalize the results of Achdou, Maday and Widlund [1], obtained for the case of order one finite elements, to a wide class of discretization spaces including finite elements of any orders. More precisely, we show that the condition number of the preconditioned matrix grows at most polylogarithmically with the number of degrees of freedom per subdomain.

Preconditioners for high order mortar methods based on substructuring

S Bertoluzza;M Pennacchio
2007

Abstract

A class of preconditioners for the Mortar Method based on substructuring is studied. We generalize the results of Achdou, Maday and Widlund [1], obtained for the case of order one finite elements, to a wide class of discretization spaces including finite elements of any orders. More precisely, we show that the condition number of the preconditioned matrix grows at most polylogarithmically with the number of degrees of freedom per subdomain.
2007
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-540-34468-1
Domain Decomposition
Discretization Space
Domain Decomposition Method
Edge Function
Preconditioned Conjugate Gradient
File in questo prodotto:
File Dimensione Formato  
prod_85134-doc_154181.pdf

solo utenti autorizzati

Descrizione: Preconditioners for high order mortar methods based on substructuring
Tipologia: Versione Editoriale (PDF)
Dimensione 217.92 kB
Formato Adobe PDF
217.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/59272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact