This paper describes an operational pipeline that exploits computational geometry to derive useful knowledge about the crystallization behaviour of materials composed of varying amounts of pure components. Starting from existing knowledge related to the pure components, we compute the Gibbs free energy of all their possible compositions in a given range of temperatures, both in liquid and solid phases. Then, we exploit the convex hull method to derive the coexistence of solid and liquid phases, and model the resulting liquidus hypersurface as a simplicial complex. On such a complex, we propose novel tools to robustly compute descent lines describing the crystallization path induced by heat loss for any initial composition in the system.

Modeling liquidus hypersurfaces through simplicial complexes

M Natali;M Attene;
2010

Abstract

This paper describes an operational pipeline that exploits computational geometry to derive useful knowledge about the crystallization behaviour of materials composed of varying amounts of pure components. Starting from existing knowledge related to the pure components, we compute the Gibbs free energy of all their possible compositions in a given range of temperatures, both in liquid and solid phases. Then, we exploit the convex hull method to derive the coexistence of solid and liquid phases, and model the resulting liquidus hypersurface as a simplicial complex. On such a complex, we propose novel tools to robustly compute descent lines describing the crystallization path induced by heat loss for any initial composition in the system.
2010
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-905673-80-7
File in questo prodotto:
File Dimensione Formato  
prod_85295-doc_89329.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Dimensione 394.65 kB
Formato Adobe PDF
394.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/84808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact