2011, Articolo in rivista, ENG
Omori, T [ 1 ] ; Henderson, MA [ 1 ] ; Albajar, F [ 2 ] ; Alberti, S [ 3 ] ; Baruah, U [ 4 ] ; Bigelow, TS [ 5 ] ; Beckett, B [ 1 ] ; Bertizzolo, R [ 3 ] ; Bonicelli, T [ 2 ] ; Brusch, A [ 6 ] ; Caughman, JB [ 5 ] ; Chavan, R [ 3 ] ; Cirant, S [ 6 ] ; Collazos, A [ 3 ] ; Cox, D [ 1 ] ; Darbos, C [ 1 ] ; de Baar, MR [ 7 ] ; Denisov, G [ 8 ] ; Farina, D [ 6 ] ; Gandini, F [ 1 ] ; Gassmann, T [ 1 ] ; Goodman, TP [ 3 ] ; Heidinger, R [ 2 ] ; Hogge, JP [ 3 ] ; Illy, S [ 9 ] ; Jean, O [ 1 ] ; Jin, J [ 9 ] ; Kajiwara, K [ 10 ] ; Kasparek, W [ 11 ] ; Kasugai, A [ 10 ] ; Kern, S [ 9 ] ; Kobayashi, N [ 10 ] ; Kumric, H [ 11 ] ; Landis, JD [ 3 ] ; Moro, A [ 6 ] ; Nazare, C [ 1 ] ; Oda, Y [ 10 ] ; Pagonakis, I [ 3 ] ; Piosczyk, B [ 9 ] ; Platania, P [ 6 ] ; Plaum, B [ 11 ] ; Poli, E [ 12 ] ; Porte, L [ 3 ] ; Purohit, D [ 1 ] ; Ramponi, G [ 6 ] ; Rao, SL [ 4 ] ; Rasmussen, DA [ 5 ] ; Ronden, DMS [ 7 ] ; Rzesnicki, T [ 9 ] ; Saibene, G [ 2 ] ; Sakamoto, K [ 10 ] ; Sanchez, F [ 3 ] ; Scherer, T [ 9 ] ; Shapiro, MA [ 13 ] ; Sozzi, C [ 6 ] ; Spaeh, P [ 9 ] ; Strauss, D [ 9 ] ; Sauter, O [ 3 ] ; Takahashi, K; Temkin, RJ [ 13 ] ; Thumm, M [ 9 ] ; Tran, MQ [ 3 ] ; Udintsev, VS [ 1 ] ; Zohm, H [ 12 ]
The Electron Cyclotron (EC) system for the ITER tokamak is designed to inject >= 20 MW RF power into the plasma for Heating and Current Drive (H&CD) applications. The EC system consists of up to 26 gyrotrons (between 1 and 2 MW each), the associated power supplies, 24 transmission lines and 5 launchers. The EC system has a diverse range of applications including central heating and current drive, current profile tailoring and control of plasma magneto-hydrodynamic (MUD) instabilities such as the sawtooth and neoclassical tearing modes (NTMs). This diverse range of applications requires the launchers to be capable of depositing the EC power across nearly the entire plasma cross section. This is achieved by two types of antennas: an equatorial port launcher (capable of injecting up to 20 MW from the plasma axis to mid-radius) and four upper port launchers providing access from inside of mid radius to near the plasma edge. The equatorial launcher design is optimized for central heating, current drive and profile tailoring, while the upper launcher should provide a very focused and peaked current density profile to control the plasma instabilities. The overall EC system has been modified during the past 3 years taking into account the issues identified in the ITER design review from 2007 and 2008 as well as integrating new technologies. This paper will review the principal objectives of the EC system, modifications made during the past 2 years and how the design is compliant with the principal objectives. (C) 2011 ITER Organization. Published by Elsevier B.V. All rights reserved.
2011, Articolo in rivista, ENG
Ferrero, R [ 1 ] ; Bin, W [ 2 ] ; Bruschi, A [ 2 ] ; Cirant, S [ 2 ] ; D'Antona, G [ 1 ] ; Davoudi, M [ 1 ] ; Granucci, G [ 2 ] ; Moro, A [ 2 ]
The new Electron Cyclotron Resonance Heating and Current Drive launcher for real-time control experiments on FTU consists of two antennas with front fast-steering mirrors, aiming to test new strategies for MHD stabilization and plasma heating. The description and experimental identification of the mirror dynamics, for the design of both an optimized position controller and a model predictive protection system, are the main objectives of this paper. Each mirror is steered by a couple of AC brushless motors for toroidal and poloidal movements and each motor is controlled by a drive with embedded PI speed and torque controllers. A position controller, based on plasma feedback, is realized externally with a set of hardware and software also described in this paper. Several tests have been carried out to evaluate the system dynamic performance compared with the target specifications and to identify a state-space model of the mechanical system to be used for a model predictive protection, whose aim is to avoid that the mirror goes out of the workspace boundaries. (C) 2011 Elsevier B.V. All rights reserved.
2011, Contributo in atti di convegno, ENG
Nowak S.; Cirant S.; Alessi E.; Boncagni L.; Crisanti F.; Galperti C.; Granucci G.; Sozzi C.; and Vitale E.
___
2011, Contributo in atti di convegno, ENG
Albajar F.; Alberti S.; Avramides K.A.; Benin P.; Bonicelli T.; Cirant S.; Darbos C.; Gantenbein G.; Goodman T.P.; Henderson M.; Illy S.; Ioannidis Z.; Hogge J.P.; Jin J.; Kern S.; Latsas G.; Lievin C.; Pagonakis I.G.; Piosczyk B.; Rzesnicki T.; Thumm M.; Tigelis I.; Tran M.Q.; Vomvoridis J.
___
2011, Contributo in atti di convegno, ENG
M.A. HENDERSON; B. BECKET; D. COX; C. DARBOS; F. GANDINI; T. GASSMAN; O. JEAN; C. NAZARE; T. OMORI; D. PUROHIT; A. TANGA; V.S. UDINTSEV; F. ALBAJAR; T. BONICELLI; R. HEIDINGER; G. SAIBENE; S. ALBERTI; R. BERTIZZOLO; R. CHAVAN; A. COLLAZOS; T.P. GOODMAN; J.P. HOGGE; J.D. LANDIS; I. PAGANAKIS; L. PORTE; F. SANCHEZ; O. SAUTER; M.Q. TRAN; C. ZUCCA; U. BARUAH; M. KUSHWAH; N.P. SINGH; S.L. RAO; T. BIGELOW; J. CAUGHMAN; D. RASMUSSEN; A. BRUSCHI; S. CIRANT; D. FARINA; A. MORO; P. PLATANIA; G. RAMPONI; C. SOZZI; M. DEBAAR; D. RONDEN; G. DENISOV; K. KAJIWARA; A. KASUGAI; N. KOBAYASHI; Y. ODA; K. SAKAMOTO; K. TAKAHASHI; W. KASPAREK; H. KUMRIC; B. PLAUM; G. AIELLO; G. GANTENBEIN; S. ILLY; J. JIN; S. KERN; A. MEIER; B. PIOSCYZK; T. RZESNICKI; T. SCHERER; S. SCHRECK; A. SERIKOV; P. SPAEH; D. STRAUSS; M. THUMM; A. VACCARO; E. POLI; H. ZOHM; M. SHAPIRO; R. TEMKIN
____
2010, Contributo in atti di convegno, ENG
Henderson M.A.; Albajar F.; Alberti S.; Baruah U.; Bigelow T.; Becket B.; Bertizzolo R.; Bonicelli T.; Bruschi A.; Caughman J.; Chavan R.; Cirant S.; Collazos A.; Cox A.; Darbos C.; de Baar M.; Denisov G.; Farina D.; Gandini F.; Gassman T.; Goodman T.P. Heidinger R.; Hogge J.P.; Illy S.; Jean O.; Jin J.; Kajiwara K.; Kasparek W.; Kasugai A.; Kern S.; Kobayashi N.; Kumric H.; Landis J.D.; Moro A.; Nazare C.; Oda Y.; Omori T.; Paganakis I.; Piosczyk B.; Platania P.; Plaum B.; Poli E.; Porte L.; Purohit D.; Ramponi G.; Rzesnicki T.; Rao S.L.; Rasmussen D.; Ronde D.; Saibene G.; Sakamoto K.; Sanchez F.; Scherer T.; Shapiro M.; Sozzi C.; Spaeh P.; Strauss D.; Sauter O.; Takahashi K.; Tanga A.; Temkin R.; Thumm M.; Tran M.Q.; Udintsev V.S.; Zohm H.; Zucca C.
Articolo numero ITR/P1-10
2010, Poster, ENG
Darbos C.; Albajar F.; Alberti S.; Bruschi A.; Cirant S.; Farina D.; Moro A.; Platania P.; Ramponi G.; Sozzi C.; et Al.
_
2010, Poster, ENG
Moro A.; Bin W.; Bruschi A.; Cirant S.; D'Antona G.; D'Arcangelo O.; Davoudi M.; Ferrero R.; Garavaglia S.; Granucci G.; Mantovani S.; Mellera V.; Muzzini V.; Simonetto A.
_
2010, Poster, ENG
Bruschi A.; Bin W.; Cirant S.; Dell'Era F.; Gantenbein G.; Leonhardt W.; Muzzini V.; Samartsev A.; Schmid M.
_
2010, Poster, ENG
Ferrero R.; Bin W.; Bruschi A.; Cirant S.; D'Antona G.; Davoudi M.; Granucci G.; Moro A.
_
2010, Poster, ENG
Omori T.; Henderson M.A.; Albajar F.; Bruschi A.; Cirant S.; Farina D.; Moro, A.; Platania P.; Ramponi G.; Sozzi C.; et Al.
_
2010, Contributo in atti di convegno, ENG
Jacchia A.; Cirant S.; De Luca F.; Buratti P.; Lazzaro E.; Tudisco O.; Mazzotta C.; Calabrò G.; Ramogida G.; Cianfarani C.; Marocco D.; Grossetti G.; Granucci G.; D'Arcangelo O.; Bin W.; and FTU and ECRH team
____
2010, Articolo in rivista, ENG
Bruschi A.; Erkmann V.; Kasparek W.; Petelin M.; Thumm M.; Bin W.; Cirant S.; D'Arcangelo O.; Hollmann F.; Lubiako L.; Noke F.; Purps F.; Zhom H.
Electron Cyclotron Resonance Heating (ECRH) systems for next step large fusion-devices operate at a Continuous Wave (CW) power well beyond 10 MW generated by a large number of gyrotrons with typically 1 MW power per unit. The combination of the power of two (or more) gyrotrons and switching of the power between different launchers for different physics applications is an attractive feature for such systems. The combination of beams from different gyrotrons would reduce the number of transmission lines and the requirements on port space. Fast switching between two antennas synchronously with the Magneto-Hydro Dynamic (MHD) modes frequency would increase the efficiency of mode stabilization. Both combination and switching as well as power sharing between different ports can be performed with high-power four-port diplexers using small frequency differences or small frequency-shift keying of the gyrotrons, respectively. Fast directional switches (FADIS) and beam combiners (BC) can be designed on the basis of different physical mechanisms: some selected design variants were investigated and the results are presented. Considerations on the integration of FADIS/BC's into large ECRH systems and their use in test arrangements are presented.
2009, Poster, ENG
Porte L.; Alberti S.; Albajar F.; Avramides K.A.; Benin P.; Bin W.; Bonicelli T.; Bruschi A.; Cirant S.; Droz E.; Dumbrajs O.; Fasel D.; Gandini F.; Goodman T.; Hogge J.P.; Illy S.; Jawla S.; Jin J.; Kern S.; Lievin C.; Marlétaz B.; Marmillod P.; ET AL.
_
2009, Poster, ENG
Erckmann V.; Kasparek W.; Petelin M.; Bruschi A.; Cirant S.; Lubyako L.; Thumm M.
_
2009, Poster, ENG
Cirant S.
Istituto di Fisica del Plasma, CNR (Milano), ed altri Istituti di ricerca
2009, Contributo in atti di convegno, ENG
Cirant S.; Bin W.; Muzzini V.; Spinicchia N.; Angella G.; Signorelli E.; Danilov I.; Heidinger R.,
___
2009, Contributo in atti di convegno, ENG
Albajar S.; Bonicelli; T.; Saibene; G.; Alberti S.; Fasel D.; Goodman T.; Hogge J.-P.; Pagonakis I.; Porte L.; Tran M.Q.; Avramides K.; Vomvridis J.; Claesen R.; Santinelli M.; Dunbrais O.; Gantenbein G.; Kern S.; Illy S. Jin J.; Piosczyk B.; Rzesnicki T.; Thumm M.; Henderson M.; Cirant S.; Latsas G.; Tigelis I.
____
2009, Contributo in atti di convegno, ENG
Goodman T.P.; Alberti S.; Cdoz E.; Cirant S.; Fasel D.; Hogge J. P.; Jawla S.; Porte L.; Siravo U.; Tran M.Q.; Albajar F.; Bonicelli T.; Benin P.; Bethuys S.; Lievin C.; Dumbrais O.; Gantenbein G.; Illy S.; Jin J.; Kern S.; Piosczyk B.; Rzesnicki T.; Thum
____
2009, Contributo in atti di convegno, ENG
Henderson M. A.; Albajar F.; Bonicelli T.; Cirant S.; Farina D.; Ramponi G.; Heidinger R.; Piosczyk B.; Thumm M.
____