2023, Articolo in rivista, ENG
Putignano O.; Muraro A.; Cancelli S.; Giacomelli L.; Gorini G.; Grosso G.; Kushoro M.H.; Marcer G.; Nocente M.; Perelli Cippo E.; Rebai M.; Tardocchi M.; Croci G.
In this paper we present the design of a photon pre-amplifier based on a photo-cathode coated Thick Gas Electron Multiplier (THGEM). Such device is crucial in application where a weak light signal produced in a radiation detector must be amplified so that it can be carried to a photo-detector by means of optical fibres. An example of a device where a light signal must be amplified is a gamma-ray Cherenkov detector for fusion power measurements in magnetic confinement devices. In such application the active part of the detector must be located very close the plasma, typically in a harsh radiation environment where standard photodetectors cannot operate. The photon pre-amplifier allows to increase the signal generated in the active part of the detector so that it can be easily detected by the photodetector located outside the harsh environment. We present the conceptual design of a THGEM based photon pre-amplifier supported by Garfield++ simulations. The device working principle is the following: primary photons impinge on the photo-cathode and extract electrons that are accelerated by the THGEM electric field. Upon collisions with the accelerated electrons, the gas molecules in the pre-amplifier are brought to excited states and de-excite emitting scintillation photons. Since each electron excites multiple gas molecules, the scintillation photons outnumber the primary photons, leading to the amplification. In addition, we present the first observation of measurements of Nitrogen gas scintillation in a THGEM device. We devised an experimental setup consisting of a vacuum chamber containing a THGEM and an alpha particle source. The vacuum chamber is filled with pure nitrogen and is coupled to a photomultiplier tube via a view-port to detect the scintillation photons generated in the THGEM. For sake of simplicity the electrons that induce the scintillation are generated by the ionization track of an alpha particle rather than by the THGEM photo-cathode coating. A good qualitative agreement between simulations and experiment has been found, however no quantitative conclusions can be made due to the lack of N2 excitation cross sections in the Garfield++ code.
2022, Articolo in rivista, ENG
Adam J.; Adamczyk L.; Agrawal N.; Aidala C.; Akers W.; Alekseev M.; Allen M. M.; Ameli F.; Angerami A.; Antonioli P.; Apadula N. J.; Aprahamian A.; Armstrong W.; Arratia M.; Arrington J. R.; Asaturyan A.; Aschenauer E. C.; Augsten K.; Aune S.; Bailey K.; Baldanza C.; Bansal M.; Barbosa F.; Barion L.; Barish K.; Battaglieri M.; Bazilevsky A.; Behera N. K.; Berdnikov V; Bernauer J.; Berriaud C.; Bhasin A.; Bhattacharya D. S.; Bielcik J.; Bielcikova J.; Bissolotti C.; Boeglin W.; Bondi M.; Borri M.; Bossu F.; Bouyjou F.; Brandenburg J. D.; Bressan A.; Brooks M.; Bultmann S. L.; Byer D.; Caines H.; de la Barca Sanchez M. Calderon; Calvelli V; Camsonne A.; Cappelli L.; Capua M.; Castro M.; Cavazza D.; Cebra D.; Celentano A.; Chakaberia I; Chan B.; Chang W.; Chartier M.; Chatterjee C.; Chen D.; Chen J.; Chen K.; Chen Z.; Chetri H.; Chiarusi T.; Chiosso M.; Chu X.; Chwastowski J. J.; Cicala G.; Cisbani E.; Cline E.; Cloet I; Colella D.; Contalbrigo M.; Contin G.; Corliss R.; Corrales-Morales Y.; Crafts J.; Crawford C.; Cruz-Torres R.; Dainton J.; Dalla Torre S.; Dasgupta S. S.; Dash S.; Dashyan N.; Datta J.; Daugherity M.; De Vita R.; Deconinck W.; Defurne M.; Dehmelt K.; Del Dotto A.; Delcarro F.; Dellacasa G.; Demiroglu Z. S.; Deptuch G. W.; Desai V; Deshpande A.; Devereaux K.; Dhillon R.; Di Salvo R.; Dilks C.; Dixit D.; Dobbs S.; Dong X.; Drachenberg J.; Drees A.; Dupre R.; Durham M.; Dzhygadlo R.; El Fassi L.; Elia D.; Epple E.; Esha R.; Evdokimov O.; Eyser O.; Falchieri D.; Fan W.; Fantini A.; Fatemi R.; Fazio S.; Fegan S.; Filippi A.; Fox H.; Francisco A.; Freeze A.; Furletov S.; Furletova Y.; Gal C.; Gardner S.; Garg P.; Gaskell D.; Gates K.; Gericke M. T. W.; Geurts F.; Ghosh C.; Giacalone M.; Giacomini F.; Gilchrist S.; Glazier D.; Gnanvo K.; Gonella L.; Greiner L. C.; Guerrini N.; Guo L.; Gupta A.; Gupta R.; Guryn W.; He X.; Hemmick T.; Heppelmann S.; Higinbotham D.; Hoballah M.; Hoghmrtsyan A.; Hohlmann M.; Horn T.; Hornidge D.; Huang H. Z.; Hyde C. E.; Iapozzuto P.; Idzik M.; Jacak V B.; Jadhav M.; Jain S.; Jena C.; Jentsch A.; Ji Y.; Ji Z.; Jia J.; Jones P. G.; Jones I R. W.; Joosten S.; Joshi S.; Kabir L.; Kalicy G.; Karyan G.; Kashyap V. K. S.; Kawall D.; Ke H.; Kelsey M.; Kim J.; Kiryluk J.; Kiselev A.; Klein S. R.; Klest H.; Kochar V; Korsch W.; Kosarzewski L.; Kotzinian A.; Krizek F.; Kumar A.; Kumar K. S.; Kumar L.; Kumar R.; Kumar S.; Kunnath A.; Kushawaha N.; Lacey R.; Lai Y. S.; Lalwani K.; Landgraf J.; Lanza L.; Lattuada D.; Lavinsky M.; Lee J. H.; Lee S. H.; Lemmon R.; Lestone A.; Lewis N.; Li H.; Li S.; Li W.; Li W.; Li X.; Li X.; Liang X.; Ligonzo T.; Lin T.; Liu J.; Liu K.; Liu M.; Livingston K.; Liyanage N.; Ljubicic T.; Long O.; Lukow N.; Ma Y.; Mammei J.; Mammoliti F.; Mamo K.; Mandjavidze I; Maple S.; Marchand D.; Margotti A.; Markert C.; Markowitz P.; Marshall T.; Martin A.; Marukyan H.; Mastroserio A.; Mathew S.; Mayilyan S.; Mayri C.; McEneaney M.; Mei Y.; Meng L.; Meot F.; Metcalfe J.; Meziani Z-E; Mihir P.; Milton R.; Mirabella A.; Mirazita M.; Mkrtchyan A.; Mkrtchyan H.; Mohanty B.; Mondal M.; Morreale A.; Movsisyan A.; Muenstermann D.; Mukherjee A.; Camacho C. Munoz; Murray M. J.; Mustafa H.; Myska M.; Nachman B. P.; Nagai K.; Naik R.; Naim J. P.; Nam J.; Nandi B.; Nappi E.; Nasim Md; Neff D.; Neiret D.; Newman P. R.; Nguyen M.; Niccolai S.; Nie M.; Noferini F.; Norman J.; Noto F.; Nunes A. S.; Odyniec G.; Okorokov V. A.; Osipenko M.; Page B.; Palatchi C.; Palmer D.; Palni P.; Pandey S.; Panzieri D.; Park S.; Paschke K.; Pastore C.; Patra R. N.; Paul A.; Paul S.; Pecar C.; Peck A.; Pegg I; Pellegrino C.; Peng C.; Pentchev L.; Perrino R.; Piotrzkowski K.; Polakovic T.; Posik M.; Prasad S.; Preghenella R.; Priens S.; Prifti E.; Przybycien M.; Pujahari P.; Quintero A.; Radici M.; Radhakrishnan S. K.; Rahman S.; Rathi S.; Raue B.; Reed R.; Reimer P.; Reinhold J.; Renner E.; Rignanese L.; Ripani M.; Rizzo A.; Romanov D.; Roy A.; Rubini N.; Ruspa M.; Ruan L.; Sabatie F.; Sadhukhan S.; Sahoo N.; Sahu P.; Samuel D.; Sarkar A.; Sarsour M.; Schmidke W.; Schmookler B.; Schwarz C.; Schwiening J.; Scott M.; Sedgwick I; Segreti M.; Sekula S.; Seto R.; Shah N.; Shahinyan A.; Sharma D.; Sharma N.; Sichtermann E. P.; Signori A.; Singh A.; Singh B. K.; Singh S. N.; Smirnov N.; Sokhan D.; Soltz R.; Sondheim W.; Spinali S.; Stacchi F.; Staszewski R.; Stepanov P.; Strazzi S.; Stroe I. R.; Sun X.; Surrow B.; Sweger Z.; Symons T. J.; Tadevosyan V; Tang A.; Tassi E.; Teodorescu L.; Tessarotto F.; Thomas D.; Thomas J. H.; Toll T.; Tomasek L.; Torales-Acosta F.; Tribedy P.; Triloki; Tripathi V; Trotta R.; Trzeciak B. A.; Tsai O.; Tu Z.; Turrisi R.; Tuve C.; Ullrich T.; Urciuoli G. M.; Valentini A.; Vallarino S.; Vandenbroucke M.; Vanek J.; Vino G.; Volpe G.; Voskanyan H.; Vossen A.; Voutier E.; Wang G.; Wang Y.; Watts D.; Wickramaarachchi N.; Wilson F.; Wong C-P; Wu X.; Wu Y.; Xie J.; Xu Q-H; Xu Z.; Xu Z. W.; Yang C.; Yang Q.; Yang Y.; Ye Z.; Ye Z.; Yi L.; Yin Z.; Yurov M.; Zachariou N.; Zhang J.; Zhang Y.; Zhang Z.; Zhang Z.; Zhao Y.; Zhao Y. X.; Zhao Z.; Zheng L.; Zurek M.; ATHENA Collaboration
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges.
2017, Articolo in rivista, ENG
Karuza, M.; Anastasi, A.; Basti, A.; Bedeschi, F.; Bartolini, M.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Sciascio, G.; Di Stefano, R.; Driutti, A.; Escalante, O.; Ferrari, C.; Fioretti, A.; Gabbanini, C.; Gioiosa, A.; Hampai, D.; Iacovacci, M.; Liedl, A.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Nath, A.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Santi, L.; Venanzoni, G.
The anomalous muon dipole magnetic moment can be measured (and calculated) with great precision thus providing insight on the Standard Model and new physics. Currently an experiment is under construction at Fermilab (U.S.A.) which is expected to measure the anomalous muon dipole magnetic moment with unprecedented precision. One of the improvements with respect to the previous experiments is expected to come from the laser calibration system which has been designed and constructed by the Italian part of the collaboration (INFN). An emphasis of this paper will be on the calibration system that is in the final stages of construction as well as the experiment which is expected to start data taking this year.