2021, Articolo in rivista, ENG
Cornacchia G.; Pappalardo L.
Modelling human mobility is crucial in several areas, from urban planning to epidemic modelling, traffic forecasting, and what-if analysis. Existing generative models focus mainly on reproducing the spatial and temporal dimensions of human mobility, while the social aspect, though it influences human movements significantly, is often neglected. Those models that capture some social perspectives of human mobility utilize trivial and unrealistic spatial and temporal mechanisms. In this paper, we propose the Spatial, Temporal and Social Exploration and Preferential Return model (STS-EPR), which embeds mechanisms to capture the spatial, temporal, and social aspects together. We compare the trajectories produced by STS-EPR with respect to real-world trajectories and synthetic trajectories generated by two state-of-the-art generative models on a set of standard mobility measures. Our experiments conducted on an open dataset show that STS-EPR, overall, outperforms existing spatial-temporal or social models demonstrating the importance of modelling adequately the sociality to capture precisely all the other dimensions of human mobility. We further investigate the impact of the tile shape of the spatial tessellation on the performance of our model. STS-EPR, which is open-source and tested on open data, represents a step towards the design of a mechanistic data-driven model that captures all the aspects of human mobility comprehensively.
DOI: 10.3390/ijgi10090599
2021, Contributo in atti di convegno, ENG
Böhm M.; Nanni M.; Pappalardo L.
Monitoring air pollution plays a key role when trying to reduce its impact on the environment and on human health. Traditionally, two main sources of information about the quantity of pollutants over a city are used: monitoring stations at ground level (when available), and satellites' remote sensing. In addition to these two, other methods have been developed in the last years that aim at understanding how traffic emissions behave in space and time at a finer scale, taking into account the human mobility patterns. We present a simple and versatile framework for estimating the quantity of four air pollutants (CO2, NOx, PM, VOC) emitted by private vehicles moving on a road network, starting from raw GPS traces and information about vehicles' fuel type, and use this framework for analyses on how such pollutants distribute over the road networks of different cities.
2021, Rapporto di ricerca (Research report), ENG
Böhm M.; Nanni M.; Pappalardo L.
Vehicles' emissions produce a significant share of cities' air pollution, with a substantial impact on the environment and human health. Traditional emission estimation methods use remote sensing stations, missing vehicles' full driving cycle, or focus on a few vehicles. This study uses GPS traces and a microscopic model to analyse the emissions of four air pollutants from thousands of vehicles in three European cities. We discover the existence of gross polluters, vehicles responsible for the greatest quantity of emissions, and grossly polluted roads, which suffer the greatest amount of emissions. Our simulations show that emissions reduction policies targeting gross polluters are way more effective than those limiting circulation based on a non-informed choice of vehicles. Our study applies to any city and may contribute to shaping the discussion on how to measure emissions with digital data.
2021, Rapporto di ricerca (Research report), ENG
Voukelatou V.; Miliou I.; Giannotti F.; Pappalardo L.
Peacefulness is a principal dimension of well-being for all humankind and is the way out of inequity and every single form of violence. Thus, its measurement has lately drawn the attention of researchers and policy-makers. During the last years, novel digital data streams have drastically changed the research in this field. In the current study, we exploit information extracted from Global Data on Events, Location, and Tone (GDELT) digital news database, to capture peacefulness through the Global Peace Index (GPI). Applying predictive machine learning models, we demonstrate that news media attention from GDELT can be used as a proxy for measuring GPI at a monthly level. Additionally, we use the SHAP methodology to obtain the most important variables that drive the predictions. This analysis highlights each country's profile and provides explanations for the predictions overall, and particularly for the errors and the events that drive these errors. We believe that digital data exploited by Social Good researchers, policy-makers, and peace-builders, with data science tools as powerful as machine learning, could contribute to maximize the societal benefits and minimize the risks to peacefulness.
2021, Articolo in rivista, ENG
Pappalardo L.; Ferres L.; Sacasa M.; Cattuto C.; Bravo L.
Inferring mobile phone users' home location, i.e., assigning a location in space to a user based on data generated by the mobile phone network, is a central task in leveraging mobile phone data to study social and urban phenomena. Despite its widespread use, home detection relies on assumptions that are difficult to check without ground truth, i.e., where the individual who owns the device resides. In this paper, we present a dataset that comprises the mobile phone activity of sixty-five participants for whom the geographical coordinates of their residence location are known. The mobile phone activity refers to Call Detail Records (CDRs), eXtended Detail Records (XDRs), and Control Plane Records (CPRs), which vary in their temporal granularity and differ in the data generation mechanism. We provide an unprecedented evaluation of the accuracy of home detection algorithms and quantify the amount of data needed for each stream to carry out successful home detection for each stream. Our work is useful for researchers and practitioners to minimize data requests and maximize the accuracy of the home antenna location.
2017, Articolo in rivista, ENG
Schmidt A.L.; Zollo F.; Vicario M.D.; Bessi A.; Scala A.; Caldarelli G.; Stanley H.E.; Quattrociocchi W.
The advent of social media and microblogging platforms has radically changed the way we consume information and form opinions. In this paper, we explore the anatomy of the information space on Facebook by characterizing on a global scale the news consumption patterns of 376 million users over a time span of 6 y (January 2010 to December 2015). We find that users tend to focus on a limited set of pages, producing a sharp community structure among news outlets. We also find that the preferences of users and news providers differ. By tracking how Facebook pages "like" each other and examining their geolocation, we find that news providers are more geographically confined than users. We devise a simple model of selective exposure that reproduces the observed connectivity patterns.