2022, Articolo in rivista, ENG
De Angeli M.; Tolias P.; Ratynskaia S.; Ripamonti D.; Vignitchouk L.; Causa F.; Daminelli G.; Esposito B.; Fortuna-Zalesna E.; Ghezzi F.; Laguardia L.; Maddaluno G.; Riva G.; Zielinski W.
Post-mortem and in situ evidence is presented in favor of the generation of high-velocity solid dust during the explosion-like interaction of runaway electrons with metallic plasma-facing components in FTU. The freshly-produced solid dust is the source of secondary de-localized wall damage through high-velocity impacts that lead to the formation of craters, which have been reproduced in dedicated light gas gun impact tests. This novel mechanism, of potential importance for ITER and DEMO, is further supported by surface analysis, multiple theoretical arguments and dust dynamics modeling.