RESULTS FROM 1 TO 3 OF 3

2023, Presentazione, ENG

First-time demonstration of the three-ion scheme for radio-frequency heating in deuterium-tritium plasmas at the Joint European Torus

Nocente M.; Kazakov Y.; Garcia J.; Kiptily V.; Ongena J.; Stancar Z.; Crombe K.; Dal Molin A.; De La Luna E.; Eriksson J.; Ghani Z.; Gorini G.; Maggi C.F.; Mantica P.; Marcer G.; Maslov M.; Putignano O.; Rigamonti D.; Salewski M.; Sharapov S.; Siren P.; Tardocchi M.; JET Contributors

The three-ion schemes have recently emerged as an effective method for plasma heating by radiofrequency (RF) waves in plasmas predominantly made by deuterium or hydrogen [1]. The schemes rely on the acceleration of a minority absorber (with a typical concentration of less than 1%) when the main plasma is made by two majority species, for example D-3He or H-D, and that determine the wave polarization. An important application of the schemes, as predicted by theory, is the capability to efficiently accelerate heavy impurity ions, such as 9Be in a machine with a beryllium wall, and in reactor relevant deuterium-tritium plasmas. Due to their large critical energy, the fast impurity ions are then expected to transfer their energy predominantly to bulk ions by Coulomb collisions, resulting in an increase of the ion temperature and, hence, in an enhanced fusion rate by thermonuclear reactions. In this talk, we present the first-time demonstration of heavy impurity heating with the three-ion scheme in deuterium-tritium plasmas of the Deuterium Tritium 2 experimental campaign (DTE2) of the Joint European Torus (JET). The experiments were conducted in 2021 and consisted in 5 successful pulses in plasmas of deuterium with a concentration of tritium in the range 50% to 75%, at a core magnetic field BT=3.7 T and plasma currents between 2 MA and 2.5 MA. Neutral Beam Injection (NBI) at a moderate power in the range 2 MW to 8 MW was used to sustain the plasmas and was complemented with ion cyclotron resonance heating (ICRH) at power levels of about 2 MW with core deposition on 9Be impurities. Evidence of the successful energy transfer from the fast heavy impurities to bulk plasma ions was shown by several signals. The plasma stored energy was found to increase by about 0.28 MJ/MW when ICRH was applied, as compared to 0.20 MJ/MW in NBI only phase. This was accompanied by a steepening of the ion temperature (Ti) profile as measured by charge exchange recombination spectroscopy (CXRS) and which extrapolates to an increase of the core ion temperature from 4 keV to 5 keV for phases with NBI only and with combined NBI and ICRH, respectively. Further evidence of increased thermal ion heating induced by ICRH was provided by neutron diagnostics. A ?40% increase of the global neutron emission in the ICRH phase was observed together with a peaking of the neutron profile in the core, as determined by the neutron cameras. Novel synthetic diamond detectors [2] were used to measure the thermal and beam-target contributions to the neutron emission and showed an increase of the former component in the ICRH phase, in agreement with the enhancement of Ti. As counterproof of 9Be acceleration, we have performed discharges where the D:T ratio was varied from 50:50 to 75:25 which, according to theory, makes the RF power absorbed predominantly by the tritium beam in lieu of 9Be. This was experimentally demonstrated by the observed variations of the thermal and beam-target contributions to the neutron spectrum measured by diamond detectors. As a second goal of the experiment, we were also able to demonstrate measurements of the fusion power by means of the detection of the spectrum of 17 MeV gamma-rays produced by d+t? 5He+? reactions, which has an interest in view of developing an alternative method to neutron diagnostics for the determination of the fusion power in a reactor. The implications of these results for bulk ion heating of deuterium-tritium plasmas of next step tokamaks will finally be discussed, especially with reference to the use of extrinsic impurities in lieu of 9Be as the ICRH absorber in machines that do not have beryllium as their first wall material.

7th Asia-Pacific Conference on Plasma Physics (AAPPS-DPP 2023), Port Messe Nagoya, Japan, 12-17 November 2023

2020, Articolo in rivista, ENG

Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D-He-3 plasmas with the 3-ion radio-frequency heating scenario

Nocente, M.; Kazakov, Ye O.; Garcia, J.; Kiptily, V. G.; Ongena, J.; Dreval, M.; Fitzgerald, M.; Sharapov, S. E.; Stancar, Z.; Weisen, H.; Baranov, Y.; Bierwage, A.; Craciunescu, T.; Dal Molin, A.; de la Luna, E.; Dumont, R.; Dumortier, P.; Eriksson, J.; Giacomelli, L.; Giroud, C.; Goloborodko, V; Gorini, G.; Khilkevitch, E.; Kirov, K. K.; Iliasova, M.; Jacquet, P.; Lauber, P.; Lerche, E.; Mantsinen, M. J.; Mariani, A.; Mazzi, S.; Nabais, F.; Nave, M. F. F.; Oliver, J.; Panontin, E.; Rigamonti, D.; Sahlberg, A.; Salewski, M.; Shevelev, A.; Shinohara, K.; Siren, P.; Sumida, S.; Tardocchi, M.; Van Eester, D.; Varje, J.; Zohar, A.

Dedicated experiments to generate energetic D ions and D-(3) He fusion-born alpha particles were performed at the Joint European Torus (JET) with the ITER-like wall (ILW). Using the 3-ion D-(D-NBI)-(3) He radio frequency (RF) heating scenario, deuterium ions from neutral beam injection (NBI) were accelerated in the core of mixed D-(3) He plasmas to higher energies with ion cyclotron resonance frequency (ICRF) waves, in turn leading to a core-localized source of alpha particles. The fast-ion distribution of RF-accelerated D-NBI ions was controlled by varying the ICRF and NBI power (P-ICRF approximate to 4-6 MW, P-NBI approximate to 3-20 MW), resulting in rather high D-D neutron (approximate to 1x10(16) s(-1)) and D-(3) He alpha rates (approximate to 2x10(16) s(-1)) at moderate input heating power. Theory and TRANSP analysis shows that large populations of co-passing MeV-range D ions were generated using the D-(D-NBI)-(3) He 3-ion ICRF scenario. This important result is corroborated by several experimental observations, in particular gamma-ray measurements. The developed experimental scenario at JET provides unique conditions for probing several aspects of future burning plasmas, such as the contribution from MeV range ions to global confinement, but without introducing tritium. Dominant fast-ion core electron heating with T-i approximate to T-e and a rich variety of fast-ion driven Alfven eigenmodes (AEs) were observed in these D-(3) He plasmas. The observed AE activities do not have a detrimental effect on the thermal confinement and, in some cases, may be driven by the fusion born alpha particles. A strong continuous increase in neutron rate was observed during long-period sawteeth (>1 s), accompanied by the observation of reversed shear AEs, which implies that a non monotonic q profile was systematically developed in these plasmas, sustained by the large fast-ion populations generated by the 3-ion ICRF scenario.

Nuclear fusion 60 (12), pp. 124006-1–124006-10

DOI: 10.1088/1741-4326/abb95d

2017, Articolo in rivista, ENG

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

Kazakov Y.O.; Ongena J.; Wright J.C.; Wukitch S.J.; Lerche E.; Mantsinen M.J.; Van Eester D.; Craciunescu T.; Kiptily V.G.; Lin Y.; Nocente M.; Nabais F.; Nave M.F.F.; Baranov Y.; Bielecki J.; Bilato R.; Bobkov V.; Crombe K.; Czarnecka A.; Faustin J.M.; Felton R.; Fitzgerald M.; Gallart D.; Giacomelli L.; Golfinopoulos T.; Hubbard A.E.; Jacquet Ph.; Johnson T.; Lennholm M.; Loarer T.; Porkolab M.; Sharapov S.E.; Valcarcel D.; Van Schoor M.; Weisen H.; Marmar E.S.; Baek S.G.; Barnard H.; Bonoli P.; Brunner D.; Candy J.; Canik J.; Churchill R.M.; Cziegler I.; Dekow G.; Delgado-Aparicio L.; Diallo A.; Edlund E.; Ennever P.; Faust I.; Fiore C.; Gao C.; Golfinopoulos T.; Greenwald M.; Hartwig Z.S.; Holland C.; Hubbard A.E.; Hughes J.W.; Hutchinson I.H.; Irby J.; LaBombard B.; Lin Y.; Lipschultz B.; Loarte A.; Mumgaard R.; Parker R.R.; Porkolab M.; Reinke M.L.; Rice J.E.; Scott S.; Shiraiwa S.; Snyder P.; Sorbom B.; Terry D.; Terry J.L.; Theiler C.; Vieira R.; Walk J.R.; Wallace G.M.; White A.; Whyte D.; Wolfe S.M.; Wright G.M.; Wright J.; Wukitch S.J.; Xu P.; Abduallev S.; Abhangi M.; Abreu P.; Afzal M.; Aggarwal K.M.; Ahlgren T.; Ahn J.H.; Aho-Mantila L.; Aiba N.; Airila M.; Albanese R.; Aldred V.; Alegre D.; Alessi E.; Aleynikov P.; Alfier A.; Alkseev A.; Allinson M.; Alper B.; Alves E.; Ambrosino G.; Ambrosino R.; Amicucci L.; Amosov V.; Andersson Sunden E.; Angelone M.; Anghel M.; Angioni C.; Appel L.; Appelbee C.; Arena P.; Ariola M.; Arnichand H.; Arshad S.; Ash A.; Ashikawa N.; Aslanyan V.; Asunta O.; Auriemma F.; Austin Y.; Avotina L.; Axton M.D.; Ayres C.; Bacharis M.; Baciero A.; Baiao D.; Bailey S.; Baker A.; Balboa I.; Balden M.; Balshaw N.; Bament R.; Banks J.W.; Baranov Y.F.; Barnard M.A.; Barnes D.; Barnes M.; Barnsley R.; Baron Wiechec A.; Barrera Orte L.; Baruzzo M.; Basiuk V.; Bassan M.; Bastow R.; Batista A.; Batistoni P.; Baughan R.; Bauvir B.; Baylor L.; Bazylev B.; Beal J.; Beaumont P.S.; Beckers M.; Beckett B.; Becoulet A.; Bekris N.; Beldishevski M.; Bell K.; Belli F.; Bellinger M.; Belonohy E.; Ben Ayed N.; Benterman N.A.; Bergsaker H.; Bernardo J.; Bernert M.; Berry M.; Bertalot L.; Besliu C.; Beurskens M.; Bieg B.; Bielecki J.; Biewer T.; Bigi M.; Bilkova P.; Binda F.; Bisoff A.; Bizarro J.P.S.; Bjorkas C.; Blackburn J.; Blackman K.; Blackman T.R.; Blanchard P.; Blatchford P.; Bobkov V.; Boboc A.; Bodnar G.; Bogar O.; Bolshakova I.; Bolzonella T.; Bonanomi N.; Bonelli F.; Boom J.; Booth J.; Borba D.; Borodin D.; Borodkina I.; Botrugno A.; Bottereau C.; Boulting P.; Bourdelle C.; Bowden M.; Bower C.; Bowman C.; Boyce T.; Boyd C.; Boyer H.J.; Bradshaw J.M.A.; Braic V.; Bravanec R.; Breizman B.; Bremond S.; Brennan P.D.; Breton S.; Brett A.; Brezinsek S.; Bright M.D.J.; Brix M.; Broeckx W.; Brombin M.; Broslawski A.; Brown D.P.D.; Brown M.; Bruno E.; Bucalossi J.; Buch J.; Buchanan J.; Buckley M.A.; Budny R.; Bufferand H.; Bulman M.; Bulmer N.; Bunting P.; Buratti P.; Burckhart A.; Buscarino A.; Busse A.; Butler N.K.; Bykov I.; Byrne J.; Cahyna P.; Calabro G.; Calvo I.; Camenen Y.; Camp P.; Campling D.C.; Cane J.; Cannas B.; Capel A.J.; Card P.J.; Cardinali A.; Carman P.; Carr M.; Carralero D.; Carraro L.; Carvalho B.B.; Carvalho I.; Carvalho P.; Casson F.J.; Castaldo C.; Catarino N.; Caumont J.; Causa F.; Cavazzana R.; Cave-Ayland K.; Cavinato M.; Cecconello M.; Ceccuzzi S.; Cecil E.; Cenedese A.; Cesario R.; Challis C.D.; Chandler M.; Chandra D.; Chang C.S.; Chankin A.; Chapman I.T.; Chapman S.C.; Chernyshova M.; Chitarin G.; Ciraolo G.; Ciric D.; Citrin J.; Clairet F.; Clark E.; Clark M.; Clarkson R.; Clatworthy D.; Clements C.; Cleverly M.; Coad J.P.; Coates P.A.; Cobalt A.; Coccorese V.; Cocilovo V.; Coda S.; Coelho R.; Coenen J.W.; Coffey I.; Colas L.; Collins S.; Conka D.; Conroy S.; Conway N.; Coombs D.; Cooper D.; Cooper S.R.; Corradino C.; Corre Y.; Corrigan G.; Cortes S.; Coster D.; Couchman A.S.; Cox M.P.; Craciunescu T.; Cramp S.; Craven R.; Crisanti F.; Croci G.; Croft D.; Crombe K.; Crowe R.; Cruz N.; Cseh G.; Cufar A.; Cullen A.; Curuia M.; Czarnecka A.; Dabirikhah H.; Dalgliesh P.; Dalley S.; Dankowski J.; Darrow D.; Davies O.; Davis W.; Day C.; Day I.E.; De Bock M.; De Castro A.; De La Cal E.; De La Luna E.; De Masi G.; De Pablos J.L.; De Temmerman G.; De Tommasi G.; De Vries P.; Deakin K.; Deane J.; Degli Agostini F.; Dejarnac R.; Delabie E.; Den Harder N.; Dendy R.O.; Denis J.; Denner P.; Devaux S.; Devynck P.; Di Maio F.; Di Siena A.; Di Troia C.; Dinca P.; D'Inca R.; Ding B.; Dittmar T.; Doerk H.; Doerner R.P.; Donne T.; Dorling S.E.; Dormido-Canto S.; Doswon S.; Douai D.; Doyle P.T.; Drenik A.; Drewelow P.; Drews P.; Duckworth Ph.; Dumont R.; Dumortier P.; Dunai D.; Dunne M.; Duran I.; Durodie F.; Dutta P.; Duval B.P.; Dux R.; Dylst K.; Dzysiuk N.; Edappala P.V.; Edmond J.; Edwards A.M.; Edwards J.; Eich Th.; Ekedahl A.; El-Jorf R.; Elsmore C.G.; Enachescu M.; Ericsson G.; Eriksson F.; Eriksson J.; Eriksson L.G.; Esposito B.; Esquembri S.; Esser H.G.; Esteve D.; Evans B.; Evans G.E.; Evison G.; Ewart G.D.; Fagan D.; Faitsch M.; Falie D.; Fanni A.; Fasoli A.; Faustin J.M.; Fawlk N.; Fazendeiro L.; Fedorczak N.; Felton R.C.; Fenton K.; Fernades A.; Fernandes H.; Ferreira J.; Fessey J.A.; Fevrier O.; Ficker O.; Field A.; Fietz S.; Figueiredo A.; Figueiredo J.; Fil A.; Finburg P.; Firdaouss M.; Fischer U.; Fittill L.; Fitzgerald M.; Flammini D.; Flanagan J.; Fleming C.; Flinders K.; Fonnesu N.; Fontdecaba J.M.; Formisano A.; Forsythe L.; Fortuna L.; Fortuna-Zalesna E.; Fortune M.; Foster S.; Franke T.; Franklin T.; Frasca M.; Frassinetti L.; Freisinger M.; Fresa R.; Frigione D.; Fuchs V.; Fuller D.; Futatani S.; Fyvie J.; Gal K.; Galassi D.; Galazka K.; Galdon-Quiroga J.; Gallagher J.; Gallart D.; Galvao R.; Gao X.; Gao Y.; Garcia J.; Garcia-Carrasco A.; Garcia-Munoz M.; Gardarein J.-L.; Garzotti L.; Gaudio P.; Gauthier E.; Gear D.F.; Gee S.J.; Geiger B.; Gelfusa M.; Gerasimov S.; Gervasini G.; Gethins M.; Ghani Z.; Ghate M.; Gherendi M.; Giacalone J.C.; Giacomelli L.; Gibson C.S.; Giegerich T.; Gil C.; Gil L.; Gilligan S.; Gin D.; Giovannozzi E.; Girardo J.B.; Giroud C.; Giruzzi G.; Gloggler S.; Godwin J.; Goff J.; Gohil P.; Goloborod'ko V.; Gomes R.; Goncalves B.; Goniche M.; Goodliffe M.; Goodyear A.; Gorini G.; Gosk M.; Goulding R.; Goussarov A.; Gowland R.; Graham B.; Graham M.E.; Graves J.P.; Grazier N.; Grazier P.; Green N.R.; Greuner H.; Grierson B.; Griph F.S.; Grisolia C.; Grist D.; Groth M.; Grove R.; Grundy C.N.; Grzonka J.; Guard D.; Guerard C.; Guillemaut C.; Guirlet R.; Gurl C.; Utoh H.H.; Hackett L.J.; Hacquin S.; Hagar A.; Hager R.; Hakola A.; Halitovs M.; Hall S.J.; Hallworth Cook S.P.; Hamlyn-Harris C.; Hammond K.; Harrington C.; Harrison J.; Harting D.; Hasenbeck F.; Hatano Y.; Hatch D.R.; Haupt T.D.V.; Hawes J.; Hawkes N.C.; Hawkins J.; Hawkins P.; Haydon P.W.; Hayter N.; Hazel S.; Heesterman P.J.L.; Heinola K.; Hellesen C.; Hellsten T.; Helou W.; Hemming O.N.; Hender T.C.; Henderson M.; Henderson S.S.; Henriques R.; Hepple D.; Hermon G.; Hertout P.; Hidalgo C.; Highcock E.G.; Hill M.; Hillairet J.; Hillesheim J.; Hillis D.; Hizanidis K.; Hjalmarsson A.; Hobirk J.; Hodille E.; Hogben C.H.A.; Hogeweij G.M.D.; Hollingsworth A.; Hollis S.; Homfray D.A.; Horacek J.; Hornung G.; Horton A.R.; Horton L.D.; Horvath L.; Hotchin S.P.; Hough M.R.; Howarth P.J.; Hubbard A.; Huber A.; Huber V.; Huddleston T.M.; Hughes M.; Huijsmans G.T.A.; Hunter C.L.; Huynh P.; Hynes A.M.; Iglesias D.; Imazawa N.; Imbeaux F.; Imrisek M.; Incelli M.; Innocente P.; Irishkin M.; Ivanova-Stanik I.; Jachmich S.; Jacobsen A.S.; Jacquet P.; Jansons J.; Jardin A.; Jarvinen A.; Jaulmes F.; Jednorog S.; Jenkins I.; Jeong C.; Jepu I.; Joffrin E.; Johnson R.; Johnson T.; Johnston J.; Joita L.; Jones G.; Jones T.T.C.; Hoshino K.K.; Kallenbach A.; Kamiya K.; Kaniewski J.; Kantor A.; Kappatou A.; Karhunen J.; Karkinsky D.; Karnowska I.; Kaufman M.; Kaveney G.; Kazakov Y.; Kazantzidis V.; Keeling D.L.; Keenan T.; Keep J.; Kempenaars M.; Kennedy C.; Kenny D.; Kent J.; Kent O.N.; Khilkevich E.; Kim H.T.; Kim H.S.; Kinch A.; King C.; King D.; King R.F.; Kinna D.J.; Kiptily V.; Kirk A.; Kirov K.; Kirschner A.; Kizane G.; Klepper C.; Klix A.; Knight P.; Knipe S.J.; Knott S.; Kobuchi T.; Kochl F.; Kocsis G.; Kodeli I.; Kogan L.; Kogut D.; Koivuranta S.; Kominis Y.; Koppen M.; Kos B.; Koskela T.; Koslowski H.R.; Koubiti M.; Kovari M.; Kowalska-Strzeciwilk E.; Krasilnikov A.; Krasilnikov V.; Krawczyk N.; Kresina M.; Krieger K.; Krivska A.; Kruezi U.; Ksiazek I.; Kukushkin A.; Kundu A.; Kurki-Suonio T.; Kwak S.; Kwiatkowski R.; Kwon O.J.; Laguardia L.; Lahtinen A.; Laing A.; Lam N.; Lambertz H.T.; Lane C.; Lang P.T.; Lanthaler S.; Lapins J.; Lasa A.; Last J.R.; Laszynska E.; Lawless R.; Lawson A.; Lawson K.D.; Lazaros A.; Lazzaro E.; Leddy J.; Lee S.; Lefebvre X.; Leggate H.J.; Lehmann J.; Lehnen M.; Leichtle D.; Leichuer P.; Leipold F.; Lengar I.; Lennholm M.; Lerche E.; Lescinskis A.; Lesnoj S.; Letellier E.; Leyland M.; Leysen W.; Li L.; Liang Y.; Likonen J.; Linke J.; Linsmeier Ch.; Lipschultz B.; Litaudon X.; Liu G.; Liu Y.; Lo Schiavo V.P.; Loarer T.; Loarte A.; Lobel R.C.; Lomanowski B.; Lomas P.J.; Lonnroth J.; Lopez J.M.; Lopez-Razola J.; Lorenzini R.; Losada U.; Lovell J.J.; Loving A.B.; Lowry C.; Luce T.; Lucock R.M.A.; Lukin A.; Luna C.; Lungaroni M.; Lungu C.P.; Lungu M.; Lunniss A.; Lupelli I.; Lyssoivan A.; Macdonald N.; Macheta P.; Maczewa K.; Magesh B.; Maget P.; Maggi C.; Maier H.; Mailloux J.; Makkonen T.; Makwana R.; Malaquias A.; Malizia A.; Manas P.; Manning A.; Manso M.E.; Mantica P.; Mantsinen M.; Manzanares A.; Maquet Ph.; Marandet Y.; Marcenko N.; Marchetto C.; Marchuk O.; Marinelli M.; Marinucci M.; Markovic T.; Marocco D.; Marot L.; Marren C.A.; Marshal R.; Martin A.; Martin Y.; Martin De Aguilera A.; Martinez F.J.; Martin-Solis J.R.; Martynova Y.; Maruyama S.; Masiello A.; Maslov M.; Matejcik S.; Mattei M.; Matthews G.F.; Maviglia F.; Mayer M.; Mayoral M.L.; May-Smith T.; Mazon D.; Mazzotta C.; McAdams R.; McCarthy P.J.; McClements K.G.; McCormack O.; McCullen P.A.; McDonald D.; McIntosh S.; McKean R.; McKehon J.; Meadows R.C.; Meakins A.; Medina F.; Medland M.; Medley S.; Meigh S.; Meigs A.G.; Meisl G.; Meitner S.; Meneses L.; Menmuir S.; Mergia K.; Merrigan I.R.; Mertens Ph.; Meshchaninov S.; Messiaen A.; Meyer H.; Mianowski S.; Michling R.; Middleton-Gear D.; Miettunen J.; Militello F.; Militello-Asp E.; Miloshevsky G.; Mink F.; Minucci S.; Miyoshi Y.; Mlynar J.; Molina D.; Monakhov I.; Moneti M.; Mooney R.; Moradi S.; Mordijck S.; Moreira L.; Moreno R.; Moro F.; Morris A.W.; Morris J.; Moser L.; Mosher S.; Moulton D.; Murari A.; Muraro A.; Murphy S.; Asakura N.N.; Na Y.S.; Nabais F.; Naish R.; Nakano T.; Nardon E.; Naulin V.; Nave M.F.F.; Nedzelski I.; Nemtsev G.; Nespoli F.; Neto A.; Neu R.; Neverov V.S.; Newman M.; Nicholls K.J.; Nicolas T.; Nielsen A.H.; Nielsen P.; Nilsson E.; Nishijima D.; Noble C.; Nocente M.; Nodwell D.; Nordlund K.; Nordman H.; Nouailletas R.; Nunes I.; Oberkofler M.; Odupitan T.; Ogawa M.T.; O'Gorman T.; Okabayashi M.; Olney R.; Omolayo O.; O'Mullane M.; Ongena J.; Orsitto F.; Orszagh J.; Oswuigwe B.I.; Otin R.; Owen A.; Paccagnella R.; Pace N.; Pacella D.; Packer L.W.; Page A.; Pajuste E.; Palazzo S.; Pamela S.; Panja S.; Papp P.; Paprok R.; Parail V.; Park M.; Parra Diaz F.; Parsons M.; Pasqualotto R.; Patel A.; Pathak S.; Paton D.; Patten H.; Pau A.; Pawelec E.; Paz Soldan C.; Peackoc A.; Pearson I.J.; Pehkonen S.-P.; Peluso E.; Penot C.; Pereira A.; Pereira R.; Pereira Puglia P.P.; Perez Von Thun C.; Peruzzo S.; Peschanyi S.; Peterka M.; Petersson P.; Petravich G.; Petre A.; Petrella N.; Petrzilka V.; Peysson Y.; Pfefferle D.; Philipps V.; Pillon M.; Pintsuk G.; Piovesan P.; Pires Dos Reis A.; Piron L.; Pironti A.; Pisano; Pitts R.; Pizzo F.; Plyusnin V.; Pomaro N.; Pompilian O.G.; Pool P.J.; Popovichev S.; Porfiri M.T.; Porosnicu C.; Porton M.; Possnert G.; Potzel S.; Powell T.; Pozzi J.; Prajapati V.; Prakash R.; Prestopino G.; Price D.; Price M.; Price R.; Prior P.; Proudfoot R.; Pucella G.; Puglia P.; Puiatti M.E.; Pulley D.; Purahoo K.; Putterich T.; Rachlew E.; Rack M.; Ragona R.; Rainford M.S.J.; Rakha A.; Ramogida G.; Ranjan S.; Rapson C.J.; Rasmussen J.J.; Rathod K.; Ratta G.; Ratynskaia S.; Ravera G.; Rayner C.; Rebai M.; Reece D.; Reed A.; Refy D.; Regan B.; Regana J.; Reich M.; Reid N.; Reimold F.; Reinhart M.; Reinke M.; Reiser D.; Rendell D.; Reux C.; Reyes Cortes S.D.A.; Reynolds S.; Riccardo V.; Richardson N.; Riddle K.; Rigamonti D.; Rimini F.G.; Risner J.; Riva M.; Roach C.; Robins R.J.; Robinson S.A.; Robinson T.; Robson D.W.; Roccella R.; Rodionov R.; Rodrigues P.; Rodriguez J.; Rohde V.; Romanelli F.; Romanelli M.; Romanelli S.; Romazanov J.; Rowe S.; Rubel M.; Rubinacci G.; Rubino G.; Ruchko L.; Ruiz M.; Ruset C.; Rzadkiewicz J.; Saarelma S.; Sabot R.; Safi E.; Sagar P.; Saibene G.; Saint-Laurent F.; Salewski M.; Salmi A.; Salmon R.; Salzedas F.; Samaddar D.; Samm U.; Sandiford D.; Santa P.; Santala M.I.K.; Santos B.; Santucci A.; Sartori F.; Sartori R.; Sauter O.; Scannell R.; Schlummer T.; Schmid K.; Schmidt V.; Schmuck S.; Schneider M.; Schopf K.; Schworer D.; Scott S.D.; Sergienko G.; Sertoli M.; Shabbir A.; Sharapov S.E.; Shaw A.; Shaw R.; Sheikh H.; Shepherd A.; Shevelev A.; Shumack A.; Sias G.; Sibbald M.; Sieglin B.; Silburn S.; Silva A.; Silva C.; Simmons P.A.; Simpson J.; Simpson-Hutchinson J.; Sinha A.; Sipila S.K.; Sips A.C.C.; Siren P.; Sirinelli A.; Sjostrand H.; Skiba M.; Skilton R.; Slabkowska K.; Slade B.; Smith N.; Smith P.G.; Smith R.; Smith T.J.; Smithies M.; Snoj L.; Soare S.; Solano E.R.; Somers A.; Sommariva C.; Sonato P.; Sopplesa A.; Sousa J.; Sozzi C.; Spagnolo S.; Spelzini T.; Spineanu F.; Stables G.; Stamatelatos I.; Stamp M.F.; Staniec P.; Stankunas G.; Stan-Sion C.; Stead M.J.; Stefanikova E.; Stepanov I.; Stephen A.V.; Stephen M.; Stevens A.; Stevens B.D.; Strachan J.; Strand P.; Strauss H.R.; Strom P.; Stubbs G.; Studholme W.; Subba F.; Summers H.P.; Svensson J.; Swiderski L.; Szabolics T.; Szawlowski M.; Szepesi G.; Suzuki T.T.; Tal B.; Tala T.; Talbot A.R.; Talebzadeh S.; Taliercio C.; Tamain P.; Tame C.; Tang W.; Tardocchi M.; Taroni L.; Taylor D.; Taylor K.A.; Tegnered D.; Telesca G.; Teplova N.; Terranova D.; Testa D.; Tholerus E.; Thomas J.; Thomas J.D.; Thomas P.; Thompson A.; Thompson C.-A.; Thompson V.K.; Thorne L.; Thornton A.; Thrysoe A.S.; Tigwell P.A.; Tipton N.; Tiseanu I.; Tojo H.; Tokitani M.; Tolias P.; Tomes M.; Tonner P.; Towndrow M.; Trimble P.; Tripsky M.; Tsalas M.; Tsavalas P.; Tskhakayajun D.; Turner I.; Turner M.M.; Turnyanskiy M.; Tvalashvili G.; Tyrrell S.G.J.; Uccello A.; Ul-Abidin Z.; Uljanovs J.; Ulyatt D.; Urano H.; Uytdenhouwen I.; Vadgama A.P.; Valcarcel D.; Valentinuzzi M.; Valisa M.; Vallejos Olivares P.; Valovic M.; Van De Morte M.; Van Eester D.; Van Renterghem W.; Van Rooij G.J.; Varje J.; Varoutis S.; Vartanian S.; Vasava K.; Vasilopoulou T.; Vega J.; Verdoolaege G.; Verhoeven R.; Verona C.; Verona Rinati G.; Veshchev E.; Vianello N.; Vicente J.; Viezzer E.; Villari S.; Villone F.; Vincenzi P.; Vinyar I.; Viola B.; Vitins A.; Vizvary Z.; Vlad M.; Voitsekhovitch I.; Vondracek P.; Vora N.; Vu T.; Pires De Sa W.W.; Wakeling B.; Waldon C.W.F.; Walkden N.; Walker M.; Walker R.; Walsh M.; Wang E.; Wang N.; Warder S.; Warren R.J.; Waterhouse J.; Watkins N.W.; Watts C.; Wauters T.; Weckmann A.; Weiland J.; Weisen H.; Weiszflog M.; Wellstood C.; West A.T.; Wheatley M.R.; Whetham S.; Whitehead A.M.; Whitehead B.D.; Widdowson A.M.; Wiesen S.; Wilkinson J.; Williams J.; Williams M.; Wilson A.R.; Wilson D.J.; Wilson H.R.; Wilson J.; Wischmeier M.; Withenshaw G.; Withycombe A.; Witts D.M.; Wood D.; Wood R.; Woodley C.; Wray S.; Wright J.; Wright J.C.; Wu J.; Wukitch S.; Wynn A.; Xu T.; Yadikin D.; Yanling W.; Yao L.; Yavorskij V.; Yoo M.G.; Young C.; Young D.; Young I.D.; Young R.; Zacks J.; Zagorski R.; Zaitsev F.S.; Zanino R.; Zarins A.; Zastrow K.D.; Zerbini M.; Zhang W.; Zhou Y.; Zilli E.; Zoita V.; Zoletnik S.; Zychor I.

We describe a new technique for the effcient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed 'three-ion' scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate effcient acceleration of 3He ions to high energies in dedicated hydrogen-deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.

Nature physics (Online) 13 (10), pp. 973–978

DOI: 10.1038/nphys4167

InstituteSelected 0/2
    ISTP, Istituto per la Scienza e Tecnologia dei Plasmi (2)
    IGI, Istituto gas ionizzati (1)
AuthorSelected 0/13
    Brombin Matteo (1)
    Carraro Lorella (1)
    Degli Agostini Fabio (1)
    Innocente Paolo (1)
    Mariani Alberto (1)
    Paccagnella Roberto (1)
    Pasqualotto Roberto (1)
    Pomaro Nicola (1)
    Puiatti Maria Ester (1)
    Rigamonti Davide (1)
TypeSelected 0/2
    Articolo in rivista (2)
    Presentazione (1)
Research programSelected 0/2
    DIT.AD020.001.001, EUROfusion (1)
    DIT.AD020.019.001, attività di supporto a ITER e DEMO (1)
EU Funding ProgramSelected 0/1
    H2020 (1)
EU ProjectSelected 0/1
    EUROfusion (1)
YearSelected 0/3
    2017 (1)
    2020 (1)
    2023 (1)
LanguageSelected 0/1
    Inglese (3)
Keyword

radio-frequency heating

RESULTS FROM 1 TO 3 OF 3