Articolo in rivista, 2022, ENG, 10.1016/j.bej.2022.108364
Russo M.E.;a Procentese A.b; Montagnaro F.c; Marzocchella A.d
aIstituto di Scienze e Tecnologie per l?Energia e la Mobilità Sostenibili - Consiglio Nazionale delle Ricerche, P.le V. Tecchio 80, Napoli, 80125, Italy; bDepartment of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, Lyngby, 2800, Denmark; cDipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Napoli, 80126, Italy; dDipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, Napoli, 80125, Italy
The use of waste lignocellulose feedstock for sugar-based biorefineries is attracting the interest of the scientific and industrial communities. The aim is to develop efficient sustainable processes to produce fuels and chemicals via the biotechnological route. However, the rational design of processes aimed at fermentable sugar recovery from lignocellulosic wastes asks for reliable quantitative data of a wide spectrum of biomass. Waste biomasses from food industries are among the most studied potential carbon sources. In the present study, the kinetics of enzymatic hydrolysis of coffee silverskin has been characterized. Coffee silverskin is one of the most abundant fractions of the coffee industry waste and it has been already used for saccharification purposes. The experimental investigation provided kinetic parameters of a semi-mechanistic model of glucose production rate from coffee silverskin catalyzed by a commercial cellulase cocktail. In addition, the adsorption of the enzymes on the solid biomass substrate has been characterized according to a Langmuir type model. The effect of enzymes adsorption on cellulose conversion and the process dynamics have been highlighted by validation tests. The optimization of biocatalyst use has been provided via a two-step hydrolysis procedure. The developed procedure can be successfully applied in the future to several biomasses to describe a wide range of possible substrates.
Biochemical engineering journal 180
adsorption, coffee silverskin, enzymatic hydrolysis, kinetics
STEMS – Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili
ID: 474062
Year: 2022
Type: Articolo in rivista
Creation: 2022-11-25 19:04:52.000
Last update: 2022-11-28 13:31:22.000
CNR authors
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1016/j.bej.2022.108364
URL: http://www.scopus.com/record/display.url?eid=2-s2.0-85123839298&origin=inward
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:474062
DOI: 10.1016/j.bej.2022.108364
Scopus: 2-s2.0-85123839298