Articolo in rivista, 2022, ENG, 10.1088/1748-0221/17/07/P07023
Tumasyan, A.; Adam, W.; Andrejkovic, J. W.; Bergauer, T.; Chatterjee, S.; Dragicevic, M.; Escalante Del Valle, A.; Frühwirth, R.; Jeitler, M.; Krammer, N.; Lechner, L.; Liko, D.; Mikulec, I.; Paulitsch, P.; Pitters, F. M.; Schieck, J.; Schöfbeck, R.; Schwarz, D.; Templ, S.; Waltenberger, W.; Wulz, C. E.; Chekhovsky, V.; Litomin, A.; Makarenko, V.; Darwish, M. R.; De Wolf, E. A.; Janssen, T.; Kello, T.; Lelek, A.; Rejeb Sfar, H.; Van Mechelen, P.; Van Putte, S.; Van Remortel, N.; Blekman, F.; Bols, E. S.; D'Hondt, J.; Delcourt, M.; El Faham, H.; Lowette, S.; Moortgat, S.; Morton, A.; Müller, D.; Sahasransu, A. R.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Beghin, D.; Bilin, B.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Grebenyuk, A.; Kalsi, A. K.; Lee, K.; Mahdavikhorrami, M.; Makarenko, I.; Moureaux, L.; Pétré, L.; Popov, A.; Postiau, N.; Starling, E.; Thomas, L.; Vanden Bemden, M.; Vander Velde, C.; Vanlaer, P.; Wezenbeek, L.; Cornelis, T.; Dobur, D.; Knolle, J.; Lambrecht, L.; Mestdach, G.; Niedziela, M.; Roskas, C.; Samalan, A.; Skovpen, K.; Tytgat, M.; Vermassen, B.; Vit, M.; Benecke, A.; Bethani, A.; Bruno, G.; Bury, F.; Caputo, C.; David, P.; Delaere, C.; Donertas, I. S.; Giammanco, A.; Jaffel, K.; Jain, Sa; Lemaitre, V.; Mondal, K.; Prisciandaro, J.; Taliercio, A.; Teklishyn, M.; Tran, T. T.; Vischia, P.; Wertz, S.; Alves, G. A.; Hensel, C.; Moraes, A.
Yerevan Physics Institute; Institute for Nuclear Problems of Belarusian State University; Universiteit Gent; Vrije Universiteit Brussel; Institut fur Hochenergiephysik; Technische Universität Wien; Universiteit Antwerpen; Centro Brasileiro de Pesquisas Físicas; Arab Academy for Science, Technology and Maritime Transport; Université Catholique de Louvain; Université Libre de Bruxelles
A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (? h) that originate from genuine tau leptons in the CMS detector against ? h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a ? h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine ? h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient ? h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved ? h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV.
Journal of instrumentation 17 (7)
calibration and fitting methods, cluster finding, Large detector systems for particle and astroparticle physics, Particle identification methods, Pattern recognition
ID: 479730
Year: 2022
Type: Articolo in rivista
Creation: 2023-03-30 10:38:50.000
Last update: 2023-03-30 10:38:50.000
CNR authors
CNR institutes
External links
OAI-PMH: Dublin Core
OAI-PMH: Mods
OAI-PMH: RDF
DOI: 10.1088/1748-0221/17/07/P07023
URL: http://www.scopus.com/record/display.url?eid=2-s2.0-85135918744&origin=inward
External IDs
CNR OAI-PMH: oai:it.cnr:prodotti:479730
DOI: 10.1088/1748-0221/17/07/P07023
Scopus: 2-s2.0-85135918744