2022, Articolo in rivista, ENG
Umbrico, Alessandro and Orlandini, Andrea and Cesta, Amedeo and Faroni, Marco and Beschi, Manuel and Pedrocchi, Nicola and Scala, Andrea and Tavormina, Piervincenzo and Koukas, Spyros and Zalonis, Andreas and Fourtakas, Nikos and Kotsaris, Panagiotis Stylianos and Andronas, Dionisis and Makris, Sotiris
Industry 4.0 is pushing forward the need for symbiotic interactions between physical and virtual entities of production environments to realize increasingly flexible and customizable production processes. This holds especially for human–robot collaboration in manufacturing, which needs continuous interaction between humans and robots. The coexistence of human and autonomous robotic agents raises several methodological and technological challenges for the design of effective, safe, and reliable control paradigms. This work proposes the integration of novel technologies from Artificial Intelligence, Control and Augmented Reality to enhance the flexibility and adaptability of collaborative systems. We present the basis to advance the classical human-aware control paradigm in favor of a user-aware control paradigm and thus personalize and adapt the synthesis and execution of collaborative processes following a user-centric approach. We leverage a manufacturing case study to show a possible deployment of the proposed framework in a real-world industrial scenario.
DOI: 10.3390/app12146839
2016, Progetto, ENG
Maurizio Mongelli, Marco Muselli, Angelo Corana, Gianmarco Veruggio
SafeCOP is an European project that targets cyberphysical systems-of-systems whose safe cooperation relies on wireless communication. In particular, SafeCOP will provide an approach to the safety assurance of such systems in the healthcare, maritime, vehicle-to-vehicle and vehicle-to-infrastructure sectors.
2016, Contributo in volume, ENG
Andrea Giordano, Giandomenico Spezzano, Andrea Vinci
Recent advancements in the fields of embedded systems, communication technologies and computer science, have laid the foundations for new kinds of applications in which a plethora of physical devices are interconnected and immersed in an environment together with human beings. These so-called Cyber-Physical Systems (CPS) issue a design challenge for new architecture in order to cope with problems such as the heterogeneity of devices, the intrinsically distributed nature of these systems, the lack of reliability in communications, etc. In this paper we introduce Rainbow, an architecture designed to address CPS issues. Rainbow hides heterogeneity by providing a Virtual Object (VO) concept, and addresses the distributed nature of CPS introducing a distributed multi-agent system on top of the physical part. Rainbow aims to get the computation close to the sources of information (i.e., the physical devices) and addresses the dynamic adaptivity requirements of CPS by using Swarm Intelligence algorithms.
2014, Contributo in atti di convegno, ITA
Giuseppina Garofalo, Andrea Giordano, Andrea Vinci
Questo studio propone un RTC dei sistemi di drenaggio utilizzando un sistema di paratoie intelligenti, che durante eventi intensi si autoregolano per ottimizzare la capacità di invaso effettiva delle condotte fognarie.
2013, Rapporto tecnico, ITA
Loris Belcastro, Andrea Giordano, Giandomenico Spezzano, Andrea Vinci
I sistemi cyber-physical sono sistemi intelligenti che integrano componenti computazionali (hardware e software), componenti di comunicazione (rete) e componenti fisiche e meccaniche, in grado di "sentire" l'ambiente fisico ed interagire con esso, con l'obiettivo di monitorare e controllare un certo ambiente fisico o supportare le attività umane. In questo documento è presentata una architettura distribuita per sistemi cyber-physical, che utilizza dei nodi di calcolo co-locati nello stesso ambiente ove sono presenti i dispositivi fisici. L'architettura nasconde l'eterogeneità dei dispositivi fisici attraverso l'astrazione dei Virtual Object, e prevede l'utilizzo di un middleware distribuito ad agenti sui nodi di calcolo. L'obiettivo è quello di avvicinare il più possibile la computazione ai dispositivi, riducendo le latenze di rete, e di permettere il pieno utilizzo di algoritmi decentralizzati e tecniche di swarm intelligence per il controllo degli ambienti fisici e la coordinazione dei dispositivi.